

Treatment Options for Patients with Sickle Cell Disease

Hosted by Blood & Marrow Transplant Information Network

Transplant and sickle cell survivor, Maxwell Monroe

Our thanks to bluebird bio for supporting this webinar.

Webcast will begin 7:00 pm ET, 6:00 pm CT, 5:00 pm MT, 4:00 pm PT

Meet Tonight's Speakers

Alison Towerman MSN, RN, CPNP

St. Louis Children's Hospital Washington University School of Medicine St. Louis, Missouri

Hemalatha Rangarajan MD

Nationwide Children's Hospital Columbus, Ohio

Emerging Curative Options for Sickle Cell Disease: Bone Marrow Transplant and Gene Therapy

ALISON TOWERMAN, RN, MSN, CPNP

WASHINGTON UNIVERSITY SCHOOL OF MEDICINE, ST. LOUIS, MO

HEMALATHA RANGARAJAN, MD

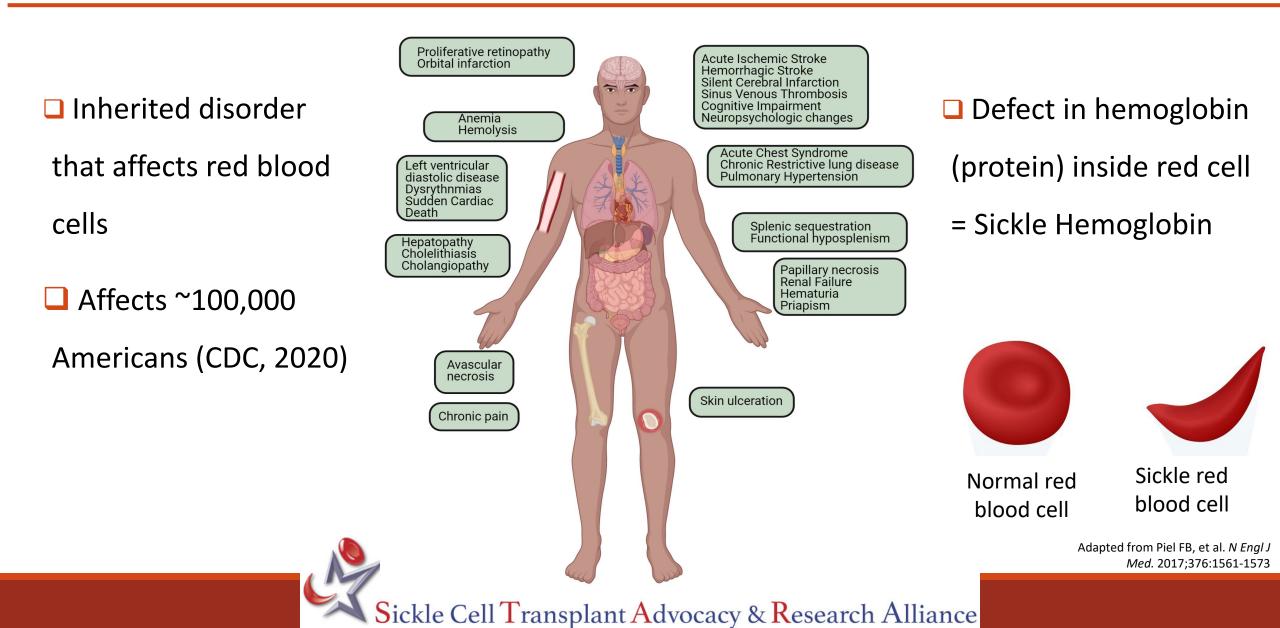
CLINICAL ASSISTANT PROFESSOR OF PEDIATRICS

NATIONWIDE CHILDREN'S HOSPITAL, COLUMBUS, OH

Conflict of Interest and Disclosures

Conflict of Interest:

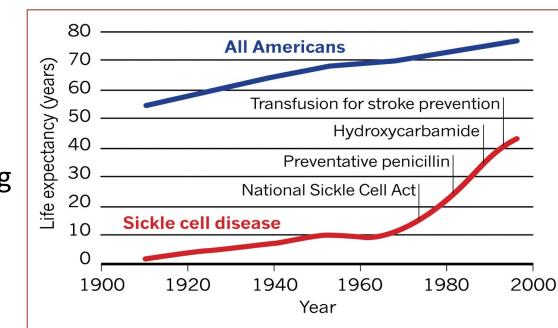
- Dr. Rangarajan: Honorary Consultant for Medexus (Treosulfan)
- Alison Towerman: None
- May discuss off-label use of some medications



Provide an overview and describe the process of bone marrow transplant (BMT) and gene therapy for sickle cell disease (SCD)

Summarize outcomes of BMT in SCD from both matched sibling and non-matched sibling donors

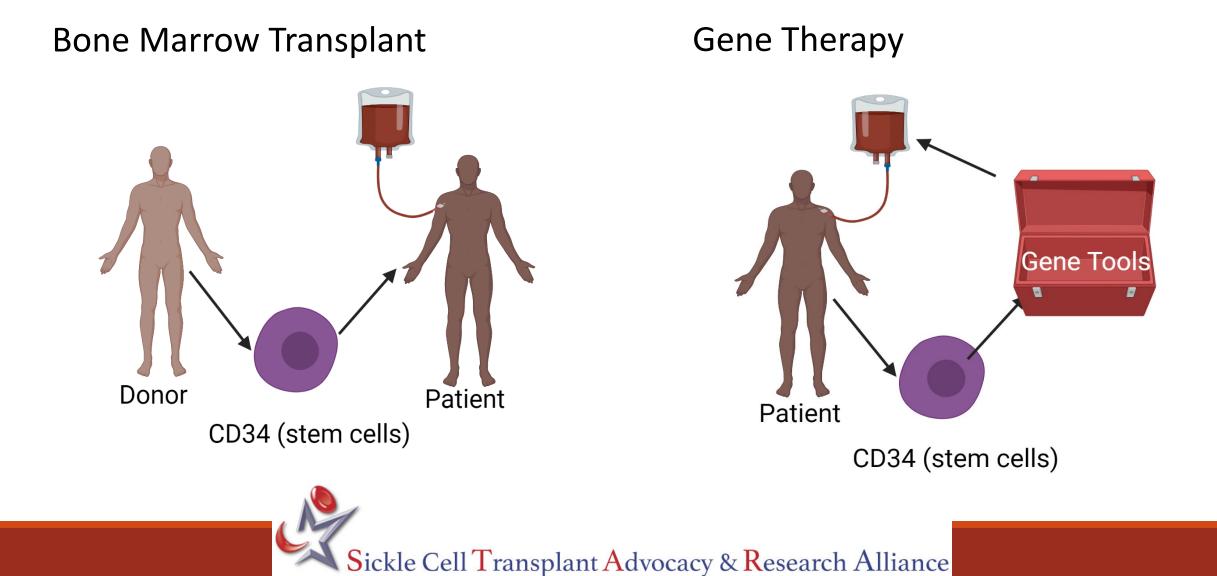
Compare outcomes of gene therapy with BMT for SCD


Overview of Sickle Cell Disease

Sickle Cell Disease: Progress and Problems

Progress:

- Improved childhood survival
- Early diagnosis
- Supportive care
- Disease modifying therapies


Problems:

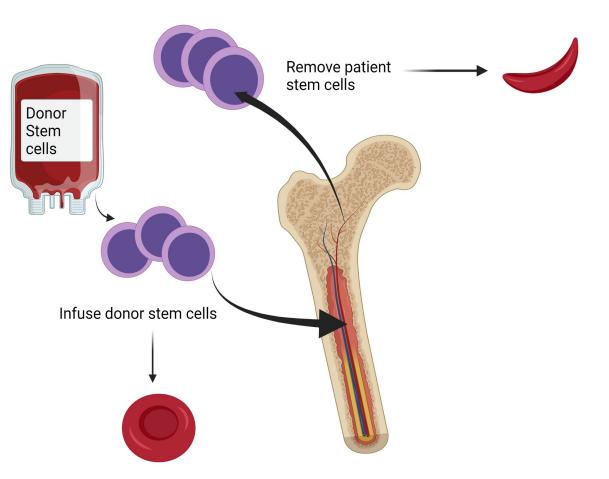
- Early mortality
- Median age of survival: 48 years (1990s to 2019)

Platt OS, et al. *N Engl J Med*. 1994;330:1639-44. DeBaun M, et al. *Blood*. 2019;133:615-617.

Pleasants, S. Nature. 515, S2(2014)

Forward Steps: Cure a Reality

The Bone Marrow Transplant Process


Stem cells housed in bone marrow give rise to different cells in body

In sickle cell disease RED CELL is defective

□ Therefore, replacing stem cells = cure

Bone marrow transplant replaces patient's stem cells with those from another person (nor self)

Chemotherapy creates space in the bone marrow for new cells to set up factory and star production

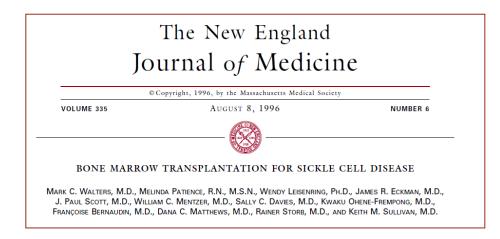
BMT in Sickle Cell Disease: Background

First patient cured of sickle cell disease through bone marrow transplant described in 1984

First international multi-center clinical trial in 1996

Advances in treatment regimens

Ability to use donors other than sibling donors

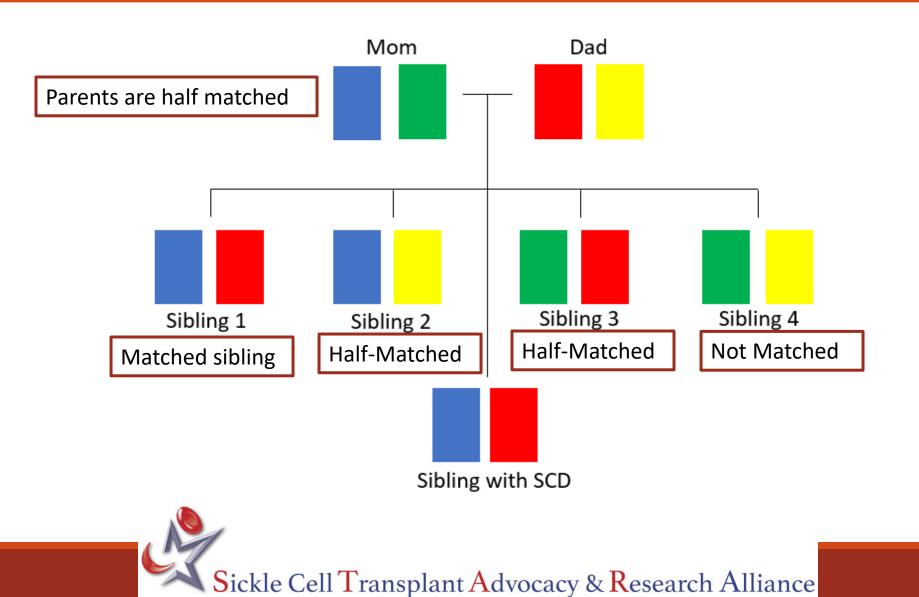

<3000 patients worldwide</p>

BONE-MARROW TRANSPLANTATION IN A PATIENT WITH SICKLE-CELL ANEMIA

F. Leonard Johnson, M.B.B.S., A. Thomas Look, M.D., Jon Gockerman, M.D., Mary R. Ruggiero, P.N.P., Luciano Dalla-Pozza, M.B.B.S., and Frederic T. Billings III, M.D.

THE NEW ENGLAND JOURNAL OF MEDICINE

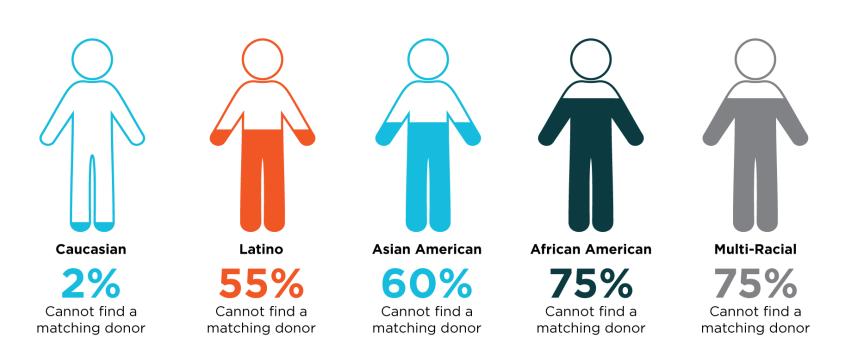
Sept. 20, 1984



Johnson L, et al. *N Engl J Med*. 1984;311:781-783. Walter M, et al. *N Engl J Med*. 1996;335:369-376 Cimpeanu et al.*Blood Rev*. 2021; 100868.

Bone Marrow Transplant for SCD: Eligibility

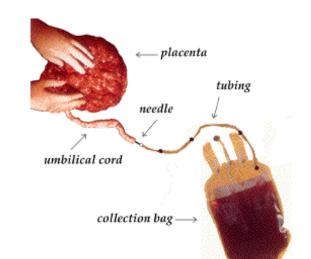
	Children	Adults (age 15-40 years)
Medical indications: Severe disease	Stroke or central nervous system event lasting longer than 24 hours	Clinically significant neurological event (stroke) or any neurological deficit lasting >24 hours
 1 stroke 2 acute chest syndrome 	Impaired neuropsychological function with abnormal cerebral MRI imaging and angiography	History of 2 or more episodes of acute chest syndrome for 2 years, despite support care measures
episodes ○ > 3 pain crises (prior 1-2	Recurrent acute chest syndrome	History of 3+ severe pain crises per year for 2 years, despite supportive care measures
years) o Irreversible organ damage	Stage I or II sickle lung disease	Red cell transfusion therapy 8 or more times per year for 1 year or more to prevent vaso- occlusive complications
Patient motivation	Recurrent vaso-occlusive painful episodes or recurrent priapism	Tricuspid valve regurgitant > 2.7 m/s on Echocardiogram
Support system	Sickle nephropathy (glomerular filtration rate 30-50% of predicted normal)	
		Arnold SD, et al. Br J Haematol. 2016; 174:515-525.


Ideal Donor: Matched Sibling

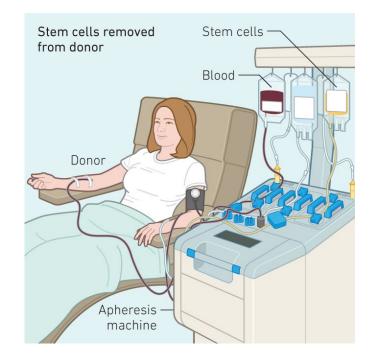
Difficulty Finding a Matched Donor for African Americans

Likelihood of finding

- matched sibling donor ~18%
- matched unrelated donor <18%
- half-matched donor: universal availability


Mentzer WC, et al. Am J Pedatric Hematol Oncol. 1994;16:27-29.

Stem Cell Sources


Bone Marrow Harvest

Umbilical Cord Blood

Peripheral Blood

- 1. Pre transplant workup: 1-3 months prior to transplant
- Preparative regimen (combination of chemotherapy ± radiation): 1-3 weeks before transplant
- 3. Transplant: Day 0
- 4. Engraftment: 2-6 weeks after transplant
- 5. Early recovery post-transplant: 1-6 months after transplant
- 6. Late recovery post-transplant: 6 months to years after transplant
- Not a surgery!

Maryland Sickle Cell Disease Association, 2017

Benefits of Bone Marrow Transplant in SCD

- Prevent further organ damage
- Stable to improved:
 - Lung, heart and spleen function
 - Brain imaging, Transcranial dopplers
- Prevention of cognitive decline

Health Related Quality of Life

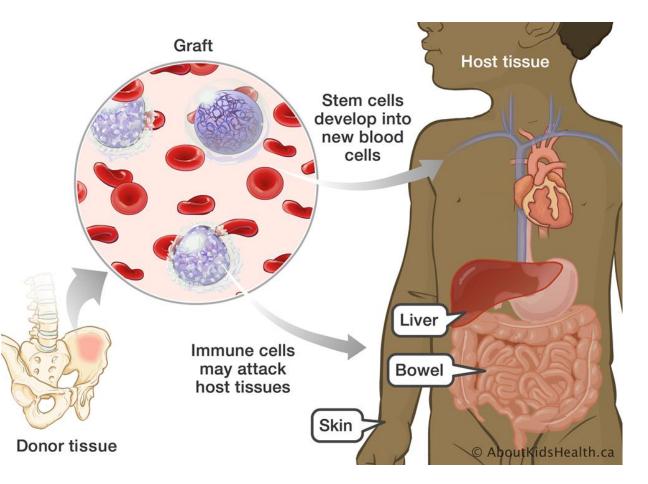
- General health
- Decreased pain
- Physical
- Emotional
- Psychosocial
- Chance for a cure!

Adapted from Badaway, SM, et al. Blood Adv. 2021; 5(2):570-583.

Bone Marrow Transplant in SCD: Risks

Immediate

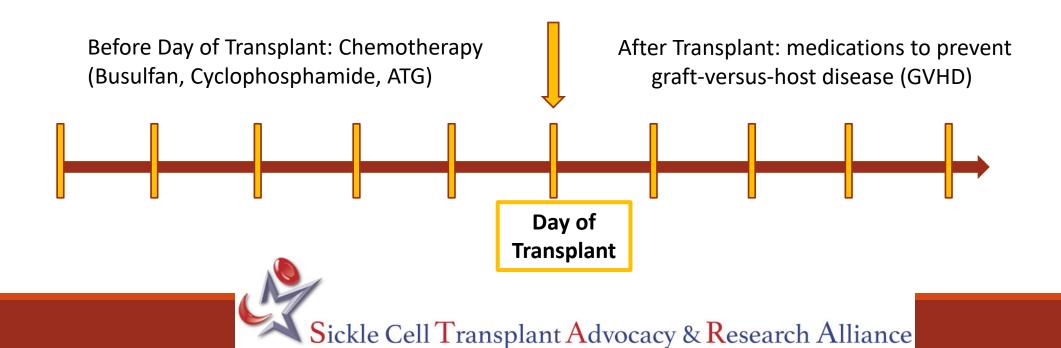
- Chemotherapy side effects
- Infection
- Graft-versus-host disease
- Rejection (Failure of Transplant)
- Social and emotional issues
- **Long term side effects**
 - Impaired organ function
 - Infertility
 - □ Risk of cancers (due to chemotherapy: very low)


Death

Graft Versus Host Disease (GVHD)

Complication of BMT

- New (donor) white cells see patient tissues/cells as foreign/non-self and attacks them
- Can affect any organ eventually
- Acute (early after transplant)
- Chronic (late after transplant)
- Treatment: Medicines that suppress the immune system



Traditional Bone Marrow Transplant in SCD

Strong Chemotherapy: Busulfan, Cyclophosphamide, Anti-thymocyte globulin (ATG)

First transplants used matched sibling donors (MSD)

Prevention of Graft versus Host Disease (GVHD): Tacrolimus or Cyclosporine & Methotrexate

Outcomes in Matched Sibling Donor Transplants Strong Chemotherapy (earlier studies)

Study, Year	# of patients	Median Age	Graft Failure	Overall Survival	Event-Free Survival	GVHD
Vermylen, 1998	50	7.5 years	10%	93%	82%	20%
Walters, 2000	50	9.4 years	10%	94%	84%	12%
Bernaudin, 2010	144	9 years	<2%	95%	93%	23%

Follow up ranging from 3 year to 5.5 years

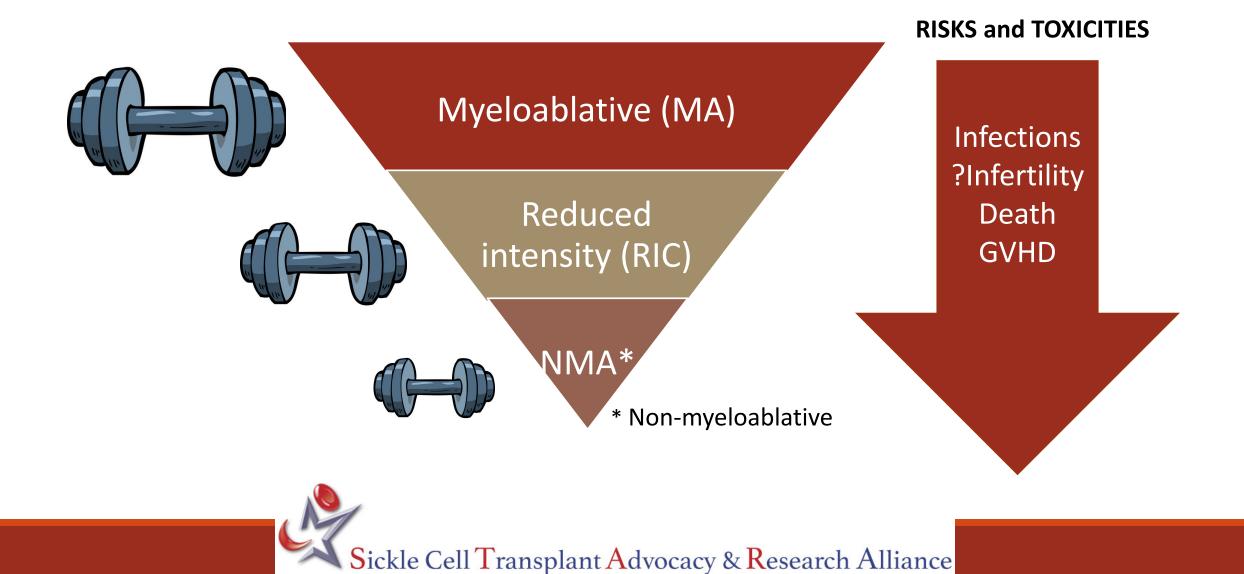
Graft failure: Transplant did not work

Overall Survival: Alive with or without SCD disease

Event Free Survival: Alive without SCD

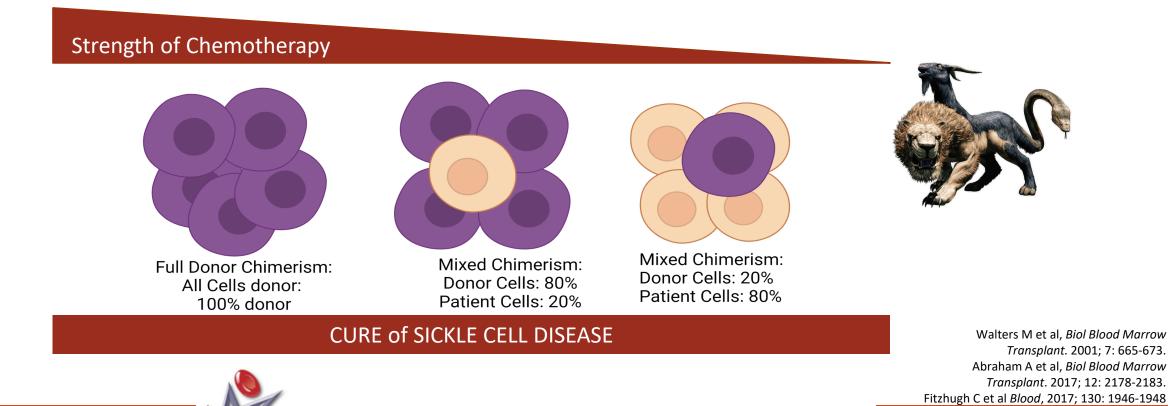
GVHD: Graft versus host disease

Vermylen C, et al. *Bone Marrow Transplant*. 1998; 22: 1-6. Walters M, et al. *Blood*.2000; 95:1918-1924. Bernaudin F, et al. *Blood* 2010; 116:3518.


Traditional BMTs: Strong Chemotherapy

- Matched sibling donor: Bone marrow (BM) = umbilical cord blood (UCB)
- Umbilical cord blood : Prefer to wait till donor is older & use BM alone or BM+ UCB
- Complications
 - Infertility
 - GVHD, Mortality
 - Neurological (brain) complication: 20-38% (seizures, headaches, bleeds)

Therefore, <u>need for less toxic chemotherapy regimens</u>


Strength of Chemotherapy Regimens

Minimum Number of Donor Cells Sufficient for Cure

Minimum percentage of donor cells for CURE: 20% donor cells sufficient!

Donor red cells survive longer than Sickle red cells.

Reduced Intensity matched sibling BMT (medium strength)

Study Year	Number of Patients	Median Age	Graft Failure	Overall Survival	Event-Free Survival	GVHD
Bhatia, 2014	18	8.9 years	0%	100%	100%	17%
King 2015*	43	13years	1.9%	93%	91%	23%
Strocchio, 2014	30	8.4 years	7%	100%	93%	3%
Krishnamurti, 2019	22	22 years	0%	91%	94%	20%

Outcomes similar to strong regimens

Neurological (brain) toxicity: 4.5 to 11%

*Menstrual cycles resumed in 4 females

Graft failure: Transplant did not work Overall Survival: Alive with or without sickle cell disease Event Free Survival: Alive without sickle cell disease GVHD: Graft versus host disease Follow up ranging from 3 year to 10 years

Bhatia M, et al. Bone Marrow Transplant.2014; 49:913-920.
 King A, et al. Am. J. Hematol. 2015;90:1093-1098.
 Strocchio L, et al. Br J Haematol. 2015; 169: 726 -236.
 Krishnamurti L, et al. Am J Hematol.2019; 94: 446-454.

Least Intense Matched Sibling BMT: Minimal Toxicity

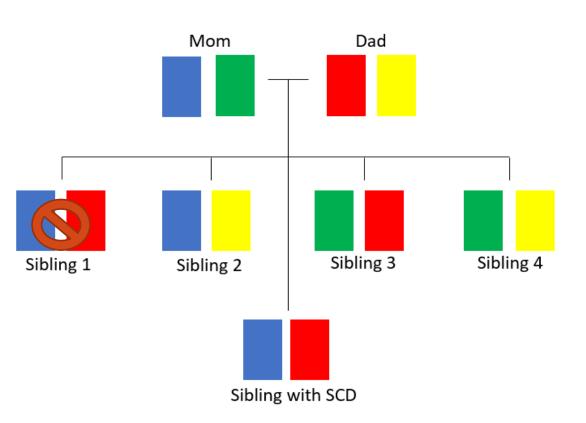
Author, Year	Number of patients	Median Age	Graft Failure %	GVHD %	Deaths %
Hsieh 2014 (updated w/ permission)	58	28.5 years	14	0	0
Saraf, 2016	13	30 years	7.7	0	0
Guilcher, 2019	16	12 years	0	0	0
*Alzharani, 2021	122	29 years	13	1.6	5.7

Follow up ranging from 18 months to 3 years

Graft Failure: Transplant not working **GVHD:** Graft Versus Host Disease

Minimal to no GVHD

- Slightly higher risk of Graft failure
- Risk of death: low
- Event Free Survival (Alive without SCD) 87% -100%


* 21 pregnancies reported in one study

Hsieh M, et al. JAMA.2014; 312: 48-56 Saraf S, et al. *Biol Blood Marrow Transplant*. 2016; 22: 441-8 Guilcher G M, et al *Biol Blood Marrow Transplant* 2019; 25: 1179-1186 Alzahrani, et al. *Blood* 2020. 136; SI: 1-2

BMT from Non-Matched Sibling Donors Alternative donors

- Matched Unrelated donors (bone marrow or peripheral blood)
- Umbilical Cord blood (not related to patient)
- Haploidentical donors (related donor but only half-matched)

Matched Unrelated Donors: High Risk of GVHD

Study Year	Number of Patients	Median Age in years	Graft Failure	Overall Survival	Event-free survival	GVHD
Shenoy, 2016	29	14 years	10%	79%	69%	62% (38 % severe)
Gluckman, 2020	70	Unknown	Unknown	86%	72%	24%
Ngwube, 2020	14	13 years	7%	100%	93%	57% (All mild except 1 patient)

Follow up ranging from 1.5 year to 2 years

Graft failure: Transplant did not work Overall Survival: Alive with or without SCD Event Free Survival: Alive without SCD GVHD: Graft versus host disease

Shenoy S ,et al. *Blood* 2016;128: 2561-7. Gluckman E, et al. Hematol Onc Stem Cell Ther 2020; 181-188 Ngwube A, et al. *Blood Adv*. 2020; 4: 3894-99

Unrelated Umbilical Cord Blood Donor: Risk of Graft Failure

Study Year	Number Patients	Median age in years	Graft Failure	Event-Free Survival	Overall Survival	GVHD
Ruggeri, 2011	16	6	44%	50%	94%	Unknown
Kamani, 2012	8	13.7	63%	25%	88%	0
Abraham, 2017	9	4	22%	78%	100%	33%
Parikh, 2021	13	4	8%	85%	85%	69%

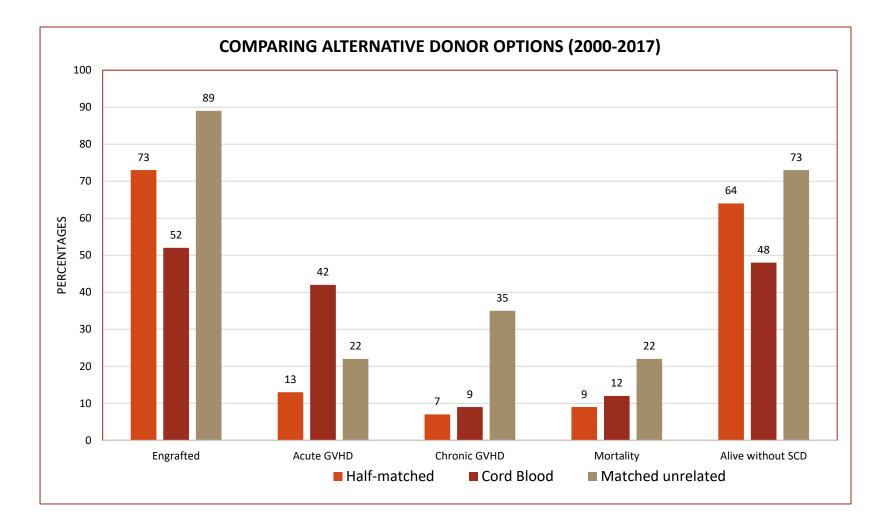
Graft failure: Transplant did not work Overall Survival: Surviving with or without disease Event Free Survival: Surviving without disease GVHD: Graft versus host disease Follow up ranging from 2 to 3 years

Ruggeri A, et al. *Biol Blood Marrow Transplant*. 2011; 17: 1375-1382. Kamani NR, et al. *Biol Blood Marrow Transplant*. 2012; 18:1265-1272. Abraham A, et al. *Biol Blood Marrow Transplant*. 2017; 23: 1580-1596 Parikh S, et al.Blood Adv 2021, 5: 843–852.

Haploidentical: Half-Matched Related Donors A Donor for All

- Early studies high risk of graft failure (transplant not working) and GVHD (caused by white cells)
- Improvements over time: Getting rid of white blood cells responsible for failure and GVHD
- Two approaches:
 - Use chemotherapy (cyclophosphamide) after transplant to destroy white blood cells
 - Remove white blood cells before the "graft" is infused to patient

Outcomes Following Half-Matched Related BMT


Study Year	# Patients	Median age	Graft Failure	Overall Survival	Event-Free Survival	GVHD
De La Fuente, 2018	18	21 years	7%	100%	93%	33%
Bolanos- Meade, 2019	12	16 years	8%	100%	92%	29%
Foel, 2019	20	14 years	10%	90%	90%	25%
Talano, 2020	19	13 years	0%	84%	84%	6.7%

Follow up ranging from 1 to 2 years

Graft failure: Transplant did not work Overall Survival: Alive with or without SCD Event Free Survival: Alive without SCD GVHD: Graft versus host disease

De La Fuente, et al. *Biol Blood Marrow Transplant*. 2019;25:1197-1209 Bolanos-Meade et al. *Lancet Hematol*. 2019; 6: e183-93. Foel J, et al. *Bone Marrow Transplant*. 2019; 54:1859-1867. *Cairo M, et al. JAMA Pediatr*. 2020;174(2):195-197.

Outcomes: Non-Matched Sibling Transplants

Recommend on a clinical trial

Currently no one donor is better than the other

Choice

- Transplant center preference/ experience
- Available clinical trials
- Family preference

Adapted from Joseph J et al. Semi Hematol, 2018: 94-101 Eapen M, et al. *Lancet Hematol*. 2019; 6: e585-e596.

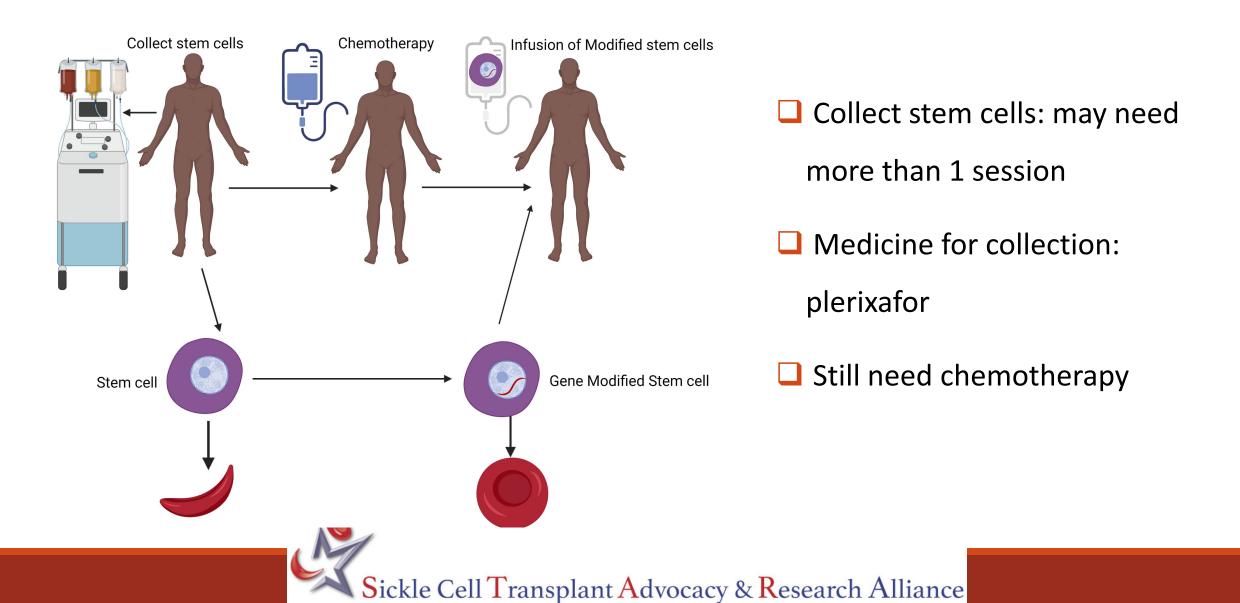
Factors Impacting Outcome after BMT for SCD

Younger Age:

 Every 1-year increase in age at time of transplant increases risk of transplant failure or death by 9%

Donor Type

- O Matched Sibling Donor = Best outcomes
 - We can now consider **BMT in patients with less severe disease.**
- Non-sibling donors: No one is better than the other based on current data.
- $\square \leq 12$ years AND matched sibling donor = best outcomes.


Gluckman E et al. *Blood.* 2017; 129:1548-1556 Nickel RS,et al. *Blood.* 2014;124: 861-866. Eapen M, et al. *Lancet Hematol.* 2019; 6: e585-e596.

What is Gene Therapy?

- An experimental technique using genes to treat patients with diseases such as sickle cell disease
- Approaches being studied include:
 - Replacing a defective gene that causes disease with a healthy copy of the gene.
 - Inactivating, or "knocking out," a gene that is functioning improperly or controlling the production of another gene.
 - Introducing a new gene into the body to help fight a disease.

Gene Therapy for Sickle Cell Disease: The Process

Gene Therapy: Pros and Cons

Pros

No need to search for donor

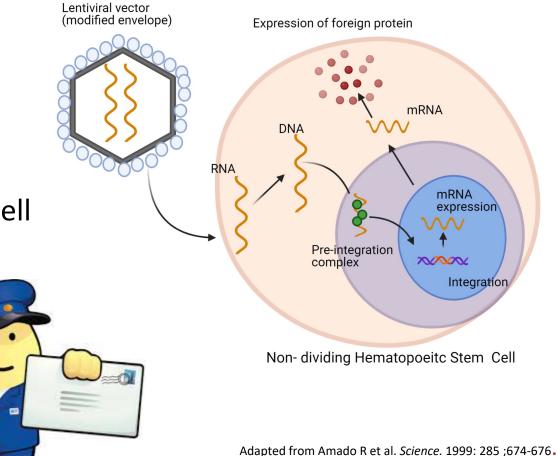
No graft-versus-host disease

Cons

Still need chemotherapy

Infertility

High cost, only on research trials

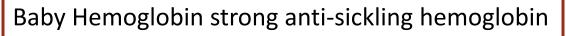

Long term effects unknown

• Need long follow up (15 yrs)

Monitor for Cancers

Gene Tool: Lentiviral Vector (Postman)

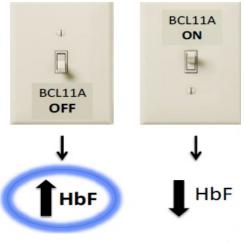
- Carry gene (message) of interest and deliver it to target cells (stem cell)
- Insert/introduce genes (message) that code for hemoglobin (protein) that does not cause the red cell to sickle.
- 1st patient: 13-year-old reported in 2017

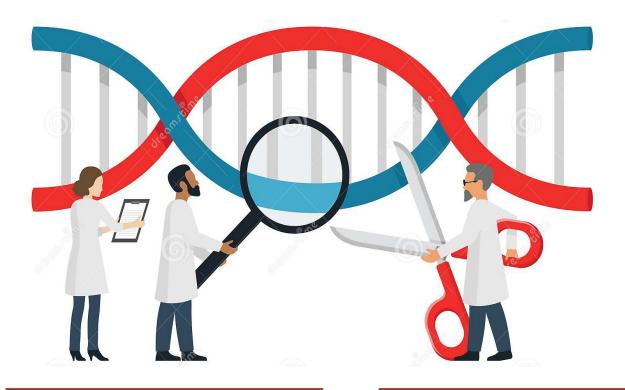


Turn off a Switch to Allow/Reawaken Baby hemoglobin (HbF) production

Time	Type of Globin (protein) in Red Blood Cell	Properties of the Red Cell
Before Birth	Baby (fetal)Hemoglobin γγ	Does not sickle
After Birth Unaffected person	Adult hemoglobin $\beta^A \beta^A$	Does not sickle
Person with Sickle Cell Trait	β ^A β ^s	Does not sickle
Person with Sickle Cell Disease	Sickle Hemoglobin β ^s β ^s	Red Cells Sickle

- BCL11A: Switch in the gene controlling HbF production
- More HbF: improved survival, less symptoms, less hospitalization




Image Courtesy of Drs. E. Esrick and D Bauer.

Genome Editing Tools: Using Genetic Scissors

Nucleases (Genetic Scissors): e.g., CRISPR

"Cut" Piece of gene carrying Master switch
 (BCL11A): "release brakes" and allow Baby
 hemoglobin production

Cut and copy, paste" Use Scissors to remove defective gene, then copy a healthy gene and paste/insert it (replace)

OR

Cut: BCL11A (master switch), increase baby hemoglobin production

Cut, copy, paste/insert Repair sickle mutation

Who is Eligible for Current Gene Therapy Trials

Eligible

Severe Disease

 $\square \ge 2$ Vaso-occlusive crisis

(Pain, acute chest syndrome, etc.) in

the last 2 years

Failure or intolerance of hydroxyurea

□ Age \ge 18 and \le 50 years with some trials including \ge 7 or \ge 12 years

Ineligible (currently)

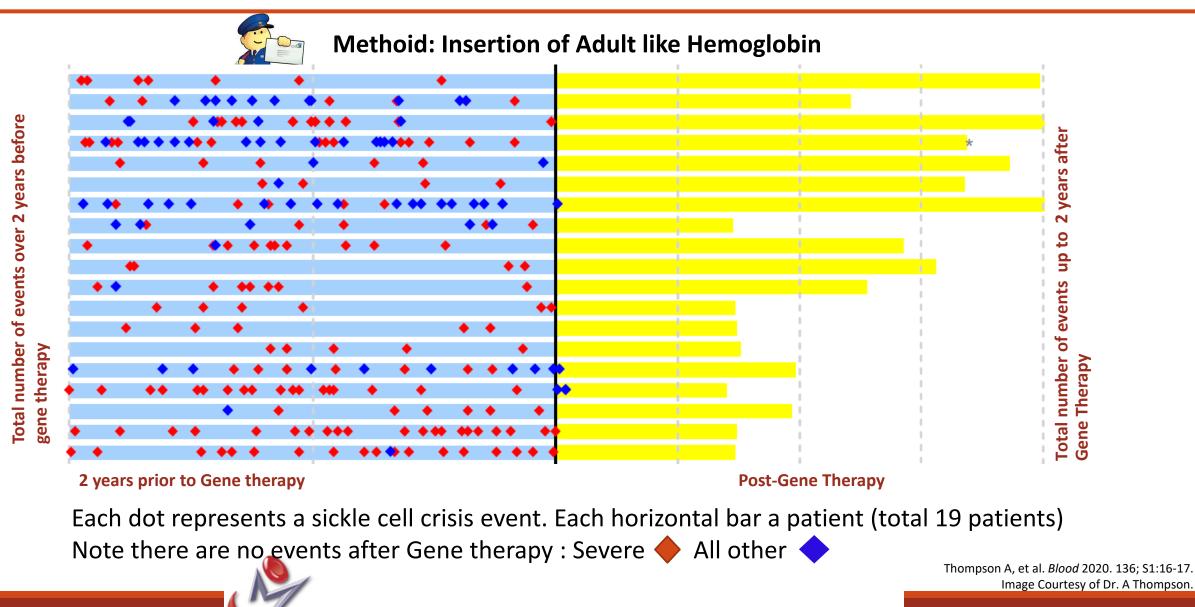
Central nervous system (brain)

disease (stroke, silent infarct, Moya

Moya)

Prior bone marrow transplant

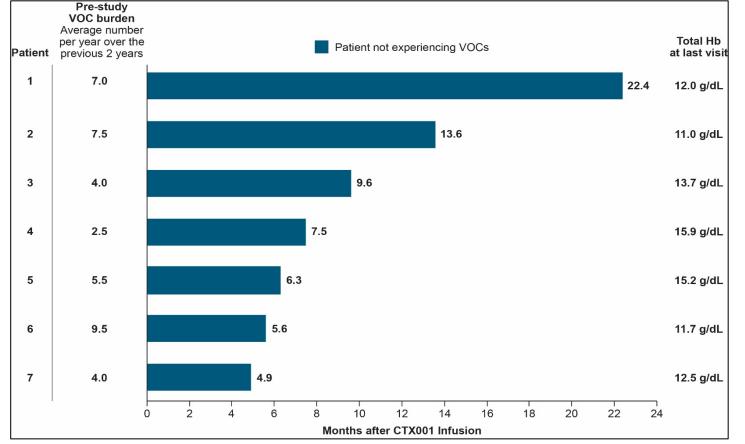
Available matched sibling donor



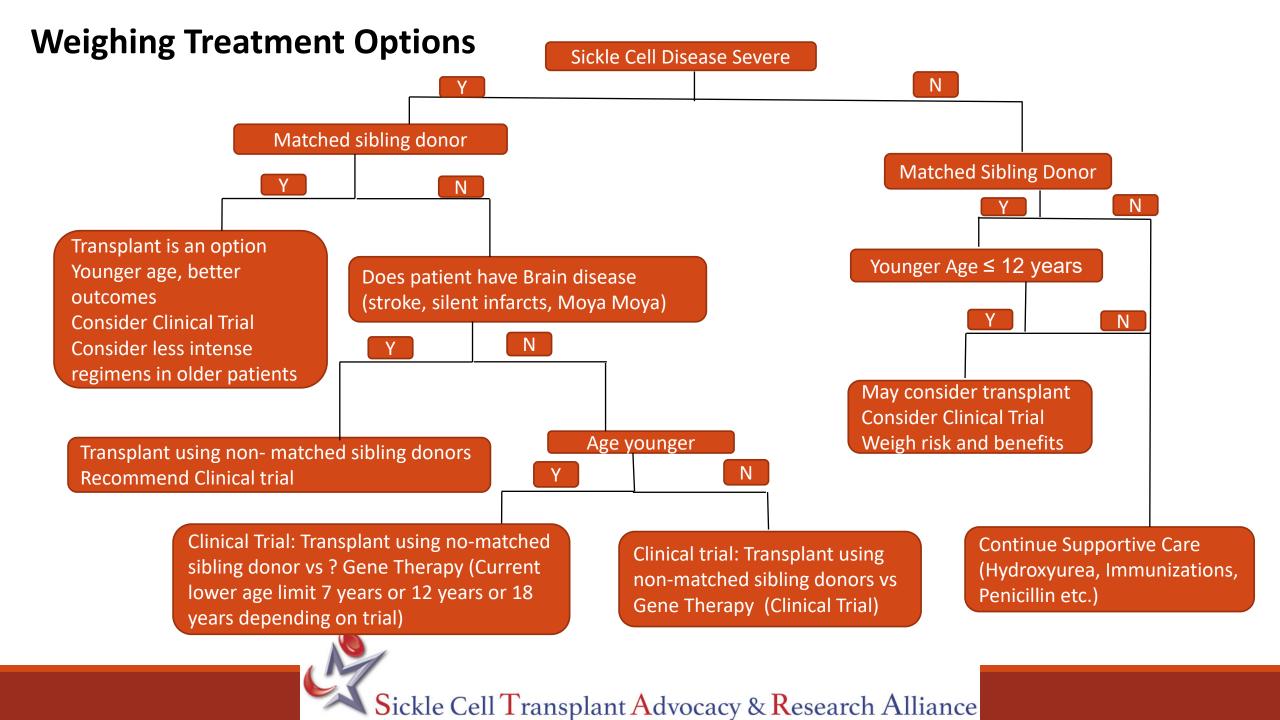
Gene Therapy Trials for SCD: Reported Outcomes

Clinical Trial	Strategy	# Patients	Chemotherapy	Comments
NCT 02151526	Adult like hemoglobin	3 patients (13-21 years)	Strong	All surviving. 1 patient: pain 30 months after gene therapy, and 2 nd patient: acute chest 6 months after gene therapy
NCT02140554	Adult like hemoglobin	36 patients (12-50 years)	Strong	2 Death: 1 due to heart issues, 1 due toblood cancer1 another patient with blood cancer (alive)1 patient: Needing transfusionsAll unrelated to gene therapy
NCT03282656	Delete Master Switch	6 patients (7-25 years)	Strong	All surviving 1 patient: sickle cell crisis 8 month after gene therapy
NCT03745287	Snip off Master Switch	3 patients (22-33 years)	Strong	All surviving None
NCT02186418	Baby like hemoglobin	3 patients (19-34 years)	Medium intensity	All surviving None

Median follow up for all above studies: 3-4 years


Sickle Cell Crisis-Free Period after Gene Therapy

Sickle Cell Crisis-Free Period after Gene Therapy



Method: Deleting Master Switch and allowing baby hemoglobin production

Number of months patients have remained free of Vaso-occlusive crisis (VOC) i.e Sickle cell crisis after Gene therapy Each horizontal bar represents a patient (total number of patients=7)

Figures with permission from Frangoul H.

Conclusions

Matched sibling donor bone marrow transplant in sickle cell disease provides excellent outcomes, being considered in less severe disease

Younger age donor (matched sibling and non-sibling) associated with improved outcomes

Current data does not favor one non-matched sibling donor over another

Gene therapy: rapid strides are being made, however longer follow up is needed

RESOURCES

Sickle Cell Transplant Advocacy & Research Alliance (STAR): curesicklenow.org

Transplant for sickle cell disease educational materials & clinical trials information

American Society of Gene and Cell Therapy: ASGCT.org

- Gene therapy for SCD : asgct.org/research/news/september-2020/patient-education-sickle-cell
- Clinical trials: Gene therapy for sickle cell disease: asgct.careboxhealth.com

Be The Match: bethematch.org, 888-999-6743

Information about transplant and sickle cell disease

Blood & Marrow Transplant Information Network (BMT InfoNet) (bmtinfonet.org) 888-597-7674

- Information about what's involved in having a bone marrow transplant
- One-on-one peer-support program

Jason Carter Clinical Trial Search and Support Program: ctsearchsupport.org/sickle-cell 888-814-8610

Questions?

Thanks to bluebird bio for its support of this webinar.

bmtinfonet.org + help@bmtinfonet.org + 847-433-3313

Thank you for participating in the webinar!

Please complete the post webinar evaluation so that we can learn from you and improve future programs.

This webinar was recorded and will be available for viewing

on the BMT InfoNet website shortly.

Go to BMT InfoNet's Video Learning Library to view the recording bmtinfonet.org/videos

Sue Stewart, BMT InfoNet

Many thanks to bluebird bio for supporting this webinar.